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Introduction:

The 2007-2008 financial crisis, or the Global Economic Crisis (GEC), was the most severe
worldwide economic crisis since the Great Depression. Predatory lending in the form of
subprime mortgages targeting low-income homebuyers, excessive risk-taking by global financial
institutions, a continuous buildup of toxic assets within banks, and the bursting of the United
States housing bubble culminated in a "perfect storm", which led to the Great Recession'. The
banking system, which lies at the financial system's core, suffered during the financial crisis in
2007-9. In the United States alone, in the four years following the inception of the crisis in 2008,
the number of failed banks in the United States reached 4142,

The lessons learned from the crisis have spurred a large body of research toward
understanding and identifying vulnerabilities in financial systems. Since financial systems are
fundamentally systems of individual players and institutions making decisions, agent-based
models are a powerful tool to model and analyze our financial systems and networks. One such
model is ABBA: An Agent-Based Model of the Banking System developed by Jorge A.
Chan-Lau. As one of the major components of the financial system, understanding vulnerability
in the banking system can play an important role in preventing future crises. In this paper, | will
run a sensitivity analysis on saver's probability of withdrawing their deposits from banks with
respect to the frequency of bank credit and liquidity failure. The withdrawal rate is a tangible
statistic of the general population that can be measured and predicted. Thus, understanding the
interplay between withdrawal rates and bank failures may serve as a useful indicator in
anticipating and mitigating future bank failures.

Related Literature:

In the years after the 2007-2008 financial crisis, there has been a rapid increase in the number
of studies analyzing banking and financial systems using agent-based models. An analysis of
the effectiveness and limitations of ABMs is "Agent-Based Models of Financial Markets: A
Comparison with Experimental Markets" by Nicholas T. Chan, Blake LeBaron, Andrew W. Lo,
and Tomaso Poggio, examines the efficacy of agent-based models in replicating and
understanding financial market dynamics. The researchers constructed a computer-simulated
double-auction market where artificially intelligent agents, endowed with varied learning abilities,
engage in trading. The study explores several market aspects through six experimental designs,
including price efficiency, market convergence to rational expectations equilibrium, wealth
distribution among agents, and the impact of agent heterogeneity on market dynamics. Notably,
the simulation effectively mirrored several outcomes observed in human-based experimental
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markets, while also revealing distinct differences in agent-based scenarios, which may highlight
unique aspects of human decision-making and learning in financial markets. The findings
underscore the utility and limitations of using agent-based models to probe complex market
behaviors and the potential of such models to supplement theoretical and experimental
approaches in economic research.

Methods:

M | Description:

The ABBA model is comprised of 3 agents, savers, loans, and banks. The model outlined in

Jorge-Chan is organized as follows:

Savers: heterogeneous, simple adaptive behavior, does not modify behavior/exhibit autonomy.
- Homogeneously distributed in different regions of the world, each dominated by 1 bank.
- Withdraws from account with probability W.
- When banks default, savers are paid on a first come, first serve basis.

Figure of saver behavior from Chan-Lau:

Figure 1. Savers’ behavioral decisions
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Loans:

- Homogeneously distributed in different regions.

- Properties: amount, probability of default, risk weight, rating, recovery rate in case of
default, loss rate associated w/ fire sales.

- Based on credit risk characteristics, Banks quote loan rates to borrowers at the
beginning of a period according to a simple pricing rule.

- Ifafirm goes to a bank for a loan, the bank quotes if they meet capital and reserve
requirements after adding to their portfolio.

Figure of loan behavior from Chan-Lau:
Figure 2. Loans payoffs
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Banks:

Banks can raise and deploy deposits to fund risky loans while provisioning against expected
losses. Determine the amount of equity and reserves needed to satisfy minimum regulatory
capital and reserve requirements. Solvent banks not meeting requirements can deleverage or
conduct risk-weight optimization to increase reserves and boost capital to risk-weighted assets.
Figure of Bank behavior from Chan-Lau.

Figure 3. Bank’s actions and interactions with other agents
The solid red line represents the loop induced by second-round effects; the solid blue line the loop induced by
risk-weight optimization actions by the bank; and the dashed red lines the flows and decisions following the
completion of the second-round effect and risk-weight optimization loops (see section Ill for details).
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3) Model scheduling

In one period of the model:

1. Evaluate solvency of banks after loans experience default

NOo oA WN

Evaluate second-round effects owing to cross-bank linkages
Undercapitalized banks undertake risk-weight optimization
Banks that are well-capitalized pay dividends

Reset insolvent loans, i.e. rebirth lending opportunity

Build up loan book with loans available in the bank neighborhood
Build up loan book with loans available in other neighborhoods

8. Evaluate liquidity needs related to reserves requirements

Each simulation is run for 300 periods.

Model Analysis
In the base model provided by Chan-Lau, savers take on a random withdrawal probability
sampled uniformly from [0, 21]. To better simulate the behavior of a general population, where
people's choices tend to follow a normal distribution, | sample the withdrawal probability from a
normal distribution. Originally, | planned to sample the potential means and standard deviations
using Latin hypercube sampling. However, due to the organization of the Chan-Lau model in
NetLogo, a grid search was a much more convenient approach. Due to runtime constraints, |
had to limit the number of parameters | searched through. Thus, the grid search was performed
with mean values of [10, 20, 25, 30, 40, 60], standard deviation values of [5, 15, 20], and
minimum reserve ratios of [0.03, 0.06]. Each parameter set is run 5 times and the average of
the number of liquidity failures is recorded.

Results:

Figure 1.

Heatmap of Sensitivity Analysis for min_reserve_ratio = 0.03
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Figure 2.

Heatmap of Sensitivity Analysis for min_reserve_ratio = 0.06
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The rate of liquidity failures is highly dependent on the minimum reserve ratio requirement, a
regulatory requirement that banks must adhere to. This is expected, as higher reserve
requirements force banks to hold more reserves, which lessens the impact of liquidity shocks
and their associated failures. When the minimum reserve ratio is set to 0.03, the rate of bank
failures is very high for mean withdrawal probabilities greater than 10. The rate of failures is
lowest for a mean of 10 and a standard deviation of 15. When the minimum reserve ratio is
0.06, the rate of bank failures is very low for mean values below 60. The rate of failures is
highest for a mean of 60 and a standard deviation of 5. Below are some visualizations of the
relationship between mean withdrawal probability and liquidity failures.

Figure 3. Figure 4.

Average Liquidity Failure vs. Mean Withdrawl Probability (MRR = 0.03) Average Liquidity Failure vs. Mean Withdraw! Probability (MRR = 0.06)

8 ¢ ) ® s}
500 - 20 350 20

L L
=
@

18

Y
[=]
[=]
I
W
[=]
[=]

E @
5 16 E] 16
2 5 2 2501 s 5
P:," 300 | 14 5 2z 14
B & T 200 A b
= =
o =
Z 12 g g 12 g
w v 150 T
= [=1
8 200 1 10 8 @ 108
T L] n T i
= =
100
<< a < 8
100
6 50 6

41 @
o

T T T T T T T
10 20 30 40 50 60 10 20 30 40 50 60
Mean Withdrawl Probability Mean Withdrawl Probability

Discussion:

The results from the sensitivity analysis indicate a relationship between the rate of withdrawal
and liquidity failures. In the low minimum reserve ratio regime where banks are more
susceptible to liquidity shocks, liquidity failures are minimized at the lowest mean value of 10
and medium standard deviation value of 15. The fact that liquidity failure isn't minimized at the
lowest standard deviation value indicates that there needs to be some sizeable population of
savers that have a very low / zero probability of withdrawing from the bank. This makes sense
as having a baseline population that will keep their money in the bank helps the bank when they
encounter liquidity issues. In the higher minimum reserve ratio regime, banks are more resistant
to liquidity shocks. Here, liquidity failures are maximized at the highest mean value of 10 and
the lowest standard deviation of 5. This seems to support the idea that savers with lower
probabilities of withdrawals help insulate banks to protect against liquidity shocks. This result is
unsurprising, as in many crises financial institutions that maintain a higher level of reserves
typically exhibit greater resilience. The results align with classical banking theory, which



suggests that a higher reserve ratio provides a buffer against sudden demands for withdrawals,
thereby stabilizing the bank's liquidity.

However, it is intriguing that within a higher reserve ratio regime, the highest rate of liquidity
failures occurs at a low standard deviation in withdrawal rates, coupled with high mean
withdrawal rates. This pattern suggests that even when a bank holds substantial reserves, the
homogeneity of withdrawal behaviors (reflected by a lower standard deviation) coupled with a
high average withdrawal rate can strain the bank’s liquidity. This condition could lead to
scenarios where simultaneous high demands exceed even well-prepared reserves, triggering a
liquidity shortfall.

The implications of these findings are significant for regulatory frameworks concerning liquidity
management. The data advocate for policies that not only mandate higher reserve ratios but
also encourage diversity in depositor behavior. Encouraging heterogeneity in withdrawal
behaviors can provide an additional layer of security, reducing the systemic risk that occurs
when large portions of a depositor base act in unison.

In conclusion, this analysis underscores the complexity of liquidity management within banking
institutions. While maintaining higher reserve ratios is crucial, understanding the behavioral
patterns of depositors and their impacts on liquidity also plays a pivotal role. Future research
should explore the potential for regulatory policies to incentivize or mandate such diversity
among depositors, potentially through differentiated reserve requirements based on depositor
behavior profiles. This could enhance the robustness of banking sectors against liquidity crises,
promoting greater financial stability. In addition, a denser parameter sweep, including a wider
range of minimum reserve ratios, would be helpful to better understand the relationship between
saver behavior, minimum reserve requirements, and bank liquidity failures.
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